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Abstract

The classical Gaussian concentration inequality for Lipschitz functions is mod-
ified and used to prove concentration inequalities in cases where the classical as-
sumptions (i.e. Lipschitz and Gaussian) are not met. The theory is simpler than
much of the existing theory designed to handle related generalizations. Applica-
tions include concentration of linear combinations of heavy tailed random variables,
and a variation of Milman’s general Dvoretzky theorem for non-Gaussian random
matricies with i.i.d. entries.

1 Introduction

Recall the Gaussian concentration inequality in one of its most classical forms: if f : Rn →
R is Lipschitz, and X is a random vector in Rn with the standard normal distribution,
then for all t > 0,

P {|f (X)−Mf (X)| > t} ≤ C exp

(
−c t2

Lip (f)2

)
(1)

where C, c > 0 are universal constants. Mf (X) denotes the median of f (X), and can be
replaced with the mean Ef (X). It follows from the Gaussian isoperimetric inequality of
Sudakov and Tsirelson [37] and Borell [4] that this can be improved to

P {f (X)−Mf (X) > t} ≤ 1− Φ

(
t

Lip (f)

)
where Φ is the standard normal cumulative distribution. Equality clearly holds when f is
linear. Assuming for simplicity that f is C1, it follows from a result of Pisier [33, Theorem
2.2 p176] that if Y is another random vector in Rn with the standard normal distribution,
independent of X, then for any convex function ϕ : R→ R,

Eϕ (f (X)− f (Y )) ≤ Eϕ
(π

2
|∇f (X)|Z

)
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where Z has the standard normal distribution in R and is independent of X. This often
implies that one can compare the tails of f (X)− f (Y ) to that of π

2
|∇f (X)|Z, which in

turn leads to a bound on the tails of f (X) −Mf (X). Pisier’s version of Gaussian con-
centration has two advantages over the classical version. The first is that the proof (with
input from Maurey) is surprisingly simple. The second is that the Lipschitz condition has
been removed.
In two papers, ’Variations and extensions of the Gaussian concentration inequality’

Part I (here) and Part II (see [15]), we study ways in which to apply the above inequalities
in settings where they are usually not applied. The result is that the Gaussian concentra-
tion inequality is the mother of a whole family of inequalities that seem to have nothing
to do with the normal distribution. This paper, Part I, focuses more on the classical
version, while Part II focuses on Pisier’s version. The theory is from scratch, in that no
background is needed, other than a basic knowledge of elementary mathematics (the one
thing that we don’t prove is the Gaussian concentration inequality itself). Our opinion
is that it is more direct than much of the modern theory of concentration of measure,
including for example the theory of Poincaré and log-Sobolev inequalities. We refer the
reader to [5] for information on the concentration of measure phenomenon. In Section 1.1
we discuss the methodology and provide a context for the results of Section 2, which is
the theoretical backbone of the paper. In Section 3, following up on work of Hitczenko,
Montgomery-Smith and Oleszkiewicz [22], we prove a concentration inequality for linear
combinations of heavy tailed random variables, and in Section 4 we prove a generalization
of Milman’s general Dvoretzky theorem [28, 35] for non-uniformly distributed subspaces.

1.1 Methodology: Gaussian concentration

Surgery on f : Consider the setting where X has the standard normal distribution
in Rn and f : Rn → R is, say, C1, but is not assumed to be Lipschitz. Restrict f
to some set E such that X ∈ E with high probability and |∇f | is bounded nicely
on E. The set E = {x ∈ Rn : |∇f (x)| ≤ R} is often a natural choice. Then bound
Lip (f |E) ≤ L (E) supE |∇f |, where L (E) is a parameter that measures the connec-
tivity of E. When E is convex L (E) = 1, in which case we get the obvious bound
Lip (f |E) ≤ supE |∇f |, and whenever E is a certain non-affi ne deformation of an un-
conditional convex body L (E) ≤

√
2. One can then extend the restriction f |E to the

entire space Rn so that the extension obeys Lip (f ∗) = Lip (f |E) ≤ L (E) supE |∇f |.
By applying classical Gaussian concentration of Lipschitz functions to f ∗ and observing
that P {f (X) = f ∗ (X)} ≥ P {X ∈ E}, we may transfer the concentration inequality for
f ∗ (X) about Mf ∗ (X) to an inequality for f (X) about Mf (X).
The idea of proving concentration inequalities by modifying a function on a set where

it behaves badly is not new, see for example Grable [21, Corollary] and Vu [39, Section 3]
(where the measure is supported on [0, 1]n and the Lipschitz constant is taken with respect
to the Hamming distance, see the bottom of p. 264 there). In [39] and [31, Theorem 5.1],
for example, they also make use of the average local Lipschitz constant as opposed to
the (global) Lipschitz constant. However this particular observation (restriction based on
|∇f(Z)|, Lipschitz extension, and the parameter L), goes back to a related observation
which was contained in unpublished lecture notes [13] that we prepared and distributed
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at Yale while teaching graduate classes in 2012 and 2014, where we pointed out that
one can prove Lévy’s concentration inequality for Lipschitz functions on the sphere Sn−1

(equivalently on
√
nSn−1) by extending them to Rn and applying Gaussian concentration

to the extension. We acknowledge that a similar observation, without theory surrounding
the parameter L (·), is also contained in a paper of Bobkov, Nayar, and Tetali [3].

1.2 Methodology: Non-Gaussian concentration

IfX is a random vector inRn with any distribution µ, then we may always writeX = T (Z)
for some measurable function T : Rn → R, where Z is a random vector with the standard
normal distribution on Rn. An example of such a map is the Knöthe-Rosenblatt rearrange-
ment [38], and in some cases one can write down an explicit formula for T . We then write
f(X) = (f ◦ T )(Z), and under fairly general conditions we may then apply Gaussian
concentration to f ◦ T to obtain a concentration inequality for f(X). A critical tool here
(in the case of product measures) is Proposition 2 (alluded to above) which implies that
the inverse image of an unconditional convex body under an appropriate coordinate-wise
transformation has parameter L (T−1K) ≤

√
2, where L (·) is the parameter mentioned

above. A related procedure is certainly well known in the one dimensional case, where
it is common to write a random variable X as TU , where U is uniformly distributed on
(0, 1). In the multivariate case it has also been used, without the parameter L (·), see
for example the comment in the lower half of p.1046 in Naor’s paper [30]. But there
it is specifically mentioned in the context of Lipschitz images of the standard Gaussian
measure. Note that if we can apply Gaussian concentration to a wider class of functions
f as in Section 1.1 above, then we may apply Gaussian concentration to a wider class
of non-Gaussian measures (i.e. a wider class of f ◦ T in the notation of this section).
The observations in Sections 1.1 and those of this section therefore work particularly well
together and each significantly increases the usefulness of the other. This synergy is at
the heart of the paper.
One is thus left with the problem of finding a good choice of T . If µ is an n-fold

product measure, then the most natural T acts coordinate-wise in the obvious manner
(and is the Knöthe-Rosenblatt rearrangement). If µ is spherically symmetric, then the
most natural T acts radially. For most other measures, we expect that the Knöthe-
Rosenblatt rearrangement is not a good choice. In the case of log-concave measures, the
Brenier map (see for example [24]) may be better, although the Brenier map is best for
minimizing a transportation cost, which is not exactly what we want. We focus mainly
on the case of product measures.

1.3 Notation and terminology

The median of a random variable is denoted by the operator M, which may denote any
median when not unique. The symbols C, c, C ′ etc. will usually denote unspecified but
fixed positive universal constants that may represent different values at each appearance.
Sometimes, upper case letters denote possibly large constants in [1,∞) while lower case
letters denote possibly small constants in (0, 1], but this should not be taken too seriously.
Dependence on variables will usually be indicated by subscripts, Cq, cq etc. The term

3



’random variable’will be used exclusively for real valued random variables, and not for
random vectors in Rn (n ≥ 2), or for complex random variables. In common abuse of
terminology we will make statements like ’let µ be a probability measure on R’, when
in fact µ is defined on Borel subsets of R. The term ’Gaussian concentration’is used to
mean concentration of f (Z) about, say, its median, where Z has the standard normal
distribution. We use this terminology even if the distribution of f (Z) has super-Gaussian
tails, which may happen if f grows more rapidly than linear.

2 General results on which the techniques are based

For any non-empty polygonally connected set A ⊆ Rn, let L(A) denote the largest possible
ratio of the polygonal distance between points in A and the Euclidean distance (only
considering polygonal paths contained in A). In more detail, L(A) is the infimum over all
values of λ ≥ 1 such that for all x, y ∈ A there exists a finite sequence (ui)

N
1 in Rn with

u1 = x and uN = y, such that for all 2 ≤ i ≤ N and all t ∈ [0, 1], tui + (1 − t)ui−1 ∈ A,
and such that

∑N
i=2 |ui − ui−1| ≤ λ |x− y|. If A is not polygonally connected we set

L(A) =∞, and set L(∅) = 1. Whenever A is convex, L(A) = 1. Conversely if L(A) = 1
and A is closed, then A is convex. For a function Q : Rn → R define

L(Q) = sup
t∈R

L ({x ∈ Rn : Q(x) ≤ t}) (2)

Let Lip (T, x) denote the local Lipschitz constant of a function T : A→ R around a point
x,

Lip (T, x) = lim
ε→0+

Lip
(
T |B(x,ε)∩A

)
(3)

Our main reason for defining L(·) is the following observation.

Proposition 1 Let A ⊆ Rn be any polygonally connected set containing at least two
points, with L(A) <∞. Then for any function f : A→ R,

Lip (f) ≤ L(A) sup {Lip (T, x) : x ∈ A}

Furthermore, if A is locally convex in the sense that for all x ∈ A there exists ε > 0 such
that B (x, ε) ∩ A is convex, then

L(A) = sup
f :A→R

{
Lip (f)

sup {Lip (T, x) : x ∈ A} : 0 < Lip (f) <∞
}

Proof of Proposition 1. The first part is elementary and reduces to the one dimensional
case, and implies a lower bound for L(A). We now prove the second part under the
assumption that A is locally convex, as defined in the statement of the theorem. For any
x, y ∈ A, let ρ(x, y) denote the shortest Euclidean length (infimum) of all polygonal paths
between x and y. It is easily seen that ρ is a metric on A. Now consider any ε > 0. It
follows (almost immediately) from the definition of L(A), that there exist x, y ∈ A such
that ρ(x, y) > (L(A)− ε) |x− y|. Now consider the function g : A → [0,∞) defined as
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g(z) = ρ(x, z), for which g(x) = 0, g(y) = ρ(x, y), so Lip(g) > L(A)− ε. It follows from
the definition of ρ, the triangle inequality, and the assumption of local convexity that g
is locally 1-Lipschitz. This shows that

L(A) <
Lip(g)

sup {Lip (g, x) : x ∈ A} + ε

and the result follows by sending ε→ 0+.
We are interested in the case where A is a non-affi ne deformation of a convex body

K, as the inverse image under the action of some map T : Rn → Rn. When K is 1-
unconditional (i.e. invariant under coordinate reflections) and T acts coordinatewise and
monotonically, then L(A) ≤

√
2. The actual result can be stated a bit more generally as

follows:

Proposition 2 Let n ∈ N and let Υn denote the collection of all K ⊆ Rn with the
following property: there exists a ∈ [−∞,∞]n (depending on K) such that if x ∈ K and
y ∈ Rn, and each coordinate of y is between the corresponding coordinates of x and a
in the non-strict sense (i.e. either ai ≤ yi ≤ xi or xi ≤ yi ≤ ai), then y ∈ K. For
each 1 ≤ i ≤ n, let hi : R → R be a non-decreasing function, and let T : Rn → Rn be
defined as Tx = (hi(xi))

n
1 . Then for any K ∈ Υn, L (K) ≤

√
2 and T−1K ∈ Υn, and so

L (T−1(K)) ≤
√

2.

Proof of Proposition 2. Consider any K ∈ Υn. We first show that T−1K ∈ Υn. Since
K ∈ Υn ∃a ∈ [−∞,∞]n as in the statement of the theorem. For each 1 ≤ i ≤ n, since
hi is non-decreasing, there exists bi ∈ [−∞,∞] such that for all t ∈ R, if t ≤ bi, then
hi(t) ≤ ai, and if t ≥ bi then hi(t) ≥ ai (consider three cases: ai is an upper bound for
range (hi), ai is a lower bound, or neither). Now consider any x ∈ T−1 (K) and y ∈ Rn,
such that the coordinates of y are between the corresponding coordinates of x and those of
b (always meant in the non-strict sense). By the fact that the hi are non-decreasing, and
by construction of b, it follows that the coordinates of Ty are all between the coordinates
Tx ∈ K and those of a. Since K ∈ Υn, what we have just shown implies that Ty ∈ K,
and therefore y ∈ T−1K. This shows that T−1K satisfies the defining property of Υn.
We now show that L(K) ≤

√
2. If K is empty, or a singleton, then L (K) = 1, and we

may assume without loss of generality that |K| ≥ 2. Consider any x, y ∈ K with x 6= y.
Now define z ∈ Rn as follows. If ai is between xi and yi (which is only possible if ai ∈ R),
then set zi = ai (and let the collection of all such i be denoted E), otherwise let zi be
the element of the set {xi, yi} that is closest to ai, with the obvious interpretation when
ai ∈ {±∞}. For all λ ∈ [0, 1] and all 1 ≤ i ≤ n, λzi + (1− λ)xi is between ai and xi, and
therefore λz + (1− λ)x ∈ K. Similarly, λy + (1− λ) z ∈ K, and this defines a polygonal
path of length |x− z|+ |y − z| in K from x to y. Furthermore,

〈x− z, y − z〉 =
∑
i∈E

(xi − ai) (yi − ai) ≤ 0

Using this inequality and comparing the `22 and `
2
1 norms,

|x− y|2 = |x− z|2 + |y − z|2 − 2 〈x− z, y − z〉 ≥ 1

2
(|x− z|+ |y − z|)2
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and it follows that L(K) ≤
√

2.
Let Φ denote the standard normal cumulative distribution and φ = Φ′ the standard

normal density.

Theorem 3 Let n ∈ N, A > 0, let µ be a probability measure on Rn, and let H : Rn → Rn
and ψ,Q : Rn → R be measurable functions such that µ = Hγn, where γn is the standard
Gaussian measure on Rn with density dγn/dx = (2π)−n/2 exp

(
− |x|2 /2

)
, and such that

ψ ◦H is locally Lipschitz with

Q (x) ≥ Lip (ψ ◦H, x)

for all x ∈ Rn. Let X and Z be random vectors in Rn, where the distribution of X is µ,
and Z follows the standard normal distribution. Let R > 0 and t > Φ−1

(
1− (2A+ 4)−1

)
be such that P {Q(Z) > R} ≤ A (1− Φ(t)). Then

P {|ψ(X)−Mψ(X)| > 2L(Q)Rt} ≤ (A+ 2) (1− Φ(t))

where L(Q) is defined by (2).

Proof of Theorem 3. Since the distribution of the random vector H(Z) is µ, we
may assume without loss of generality that X = H(Z). Set ψ] = ψ ◦ H, in which
case ψ](Z) = ψ(X). Let K = {x : Q(x) ≤ R}. By assumption, P {Z ∈ K} > 1 −
A (1− Φ(t)), and for all x ∈ K, Lip

(
ψ]|K , x

)
≤ Lip

(
ψ], x

)
≤ R. By Proposition 1,

Lip
(
ψ]|K

)
≤ L (Q)R. The function ψ]|K may then be extended to a function ψ̃ : Rn → R

such that Lip
(
ψ̃
)

= Lip
(
ψ]|K

)
, (the existence of extensions of Lipschitz functions is

a basic result in the theory of metric spaces and Lipschitz functions). By Gaussian
concentration of Lipschitz functions and the union bound, it follows that with probability
at least 1 − (A+ 2) (1− Φ(t)), ψ](Z) = ψ̃(Z), and

∣∣∣ψ̃(Z)−Mψ̃(Z)
∣∣∣ ≤ L (Q)Rt. Since

(A+ 2) (1− Φ(t)) < 1/2, this implies that greater than 50% of the mass of the distribution
of ψ](Z) lies in the closed interval from Mψ̃(Z) − L (Q)Rt to Mψ̃(Z) + L (Q)Rt, and

must be a median, so
∣∣∣Mψ](Z)−Mψ̃(Z)

∣∣∣ ≤ L (Q)Rt. The result now follows by the
triangle inequality.
The following lemma will be used implicitly.

Lemma 4 If f, g : [0,∞) → [0,∞) are continuous strictly increasing functions with
f (0) = g (0) = 0, t ∈ [0,∞) and s = max {f (t) , g (t)} then t = min {f−1 (s) , g−1 (s)}.

3 Application: Concentration of linear combinations
of heavy tailed random variables

Concentration of linear combinations of independent random variables is most classically
studied under the assumption of exponential integrability, i.e. E exp (εXi) <∞ for some
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ε > 0. In this context, the exponential moment method plays an essential role: Using
Markov’s inequality and independence,

P

{
n∑
i=1

aiXi > t

}
= P

{
exp

(
λ

n∑
i=1

aiXi

)
> exp (λt)

}
≤ exp (−λt)E exp

(
λ

n∑
i=1

aiXi

)

= exp (−λt)
n∏
i=1

E exp (λaiXi)

The resulting estimate is then optimized over λ > 0 such that E exp (λaiXi) <∞ for all i.
Outside the realm of exponential integrability (still assuming independence), one would
estimate power moments and use Markov’s inequality,

P

{∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

}
= P

{∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

> tp

}
≤ t−pE

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

(4)

If we assume that eachXi has a symmetric distribution and that P {|Xi| ≥ t} = exp (−Ni(t))
for some concave functionN : [0,∞)→ [0,∞), then it was shown by Hitczenko, Montgomery-
Smith and Oleszkiewicz [22, Theorem 1.1] that for all p ≥ 2,(

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ C

( n∑
i=1

|ai|p E |Xi|p
)1/p

+
√
p

(
n∑
i=1

|ai|2 E |Xi|2
)1/2 (5)

where C > 0 is a universal constant, with a corresponding lower bound with C replaced
by a different constant c > 0. In the special case where (Xi)

n
1 are i.i.d. symmetric Weibull

variables with P {|Xi| ≥ t} = exp (−tq), for 0 < q ≤ 1, then cqp1/q ≤ (E |Xi|p)1/p ≤ Cqp
1/q

and assuming without loss of generality that |a| = 1, we show below that |a|p can be
replaced with |a|∞ and the bound written as

c
(

(E |X1|p)1/p |a|∞ +
√
p
(
E |X1|2

)1/2) ≤ (E ∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ Cq
(
p1/q |a|∞ +

√
p
)
(6)

which by Markov’s inequality leads to the tail estimate

P

{∣∣∣∣∣
n∑
i=1

aXi

∣∣∣∣∣ > t

}
≤ 2 exp

(
−cq min

{(
t

|a|

)2
,

(
t

|a|∞

)q})
(7)

where Cq, cq > 0 can be taken as universal constants when q is bounded away from 0.
This estimate is sharp up to the values of Cq and cq and ties in naturally with known
results in the case 1 ≤ q < ∞ since the dual of `nq is isometric to `

n
∞ when 0 < q ≤ 1.

Surprisingly, we haven’t seen this estimate in the literature. Examples of where such a
bound might have appeared but doesn’t include [1, Eq. (3.6) is specifically for ai = n−1/2],
[5, Ex. 2.27 p.50 is specifically for q ≥ 1], [25, Sec. 4 does not include the sub-Gaussian
part], and [22, Th 6.2 (moments estimates, with |a|p instead of |a|∞), Cor. 6.5 (they show
that limt→∞ logt ln 1/P {|

∑n
i=1 aXi| > t} = q)].
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If X1 is any random variable and X ′1 is an independent copy of X1, and if a > 0 is
such that P {|X1| > a} ≤ 1/2, then

{X1 > t+ a} ∩ {X ′1 ≤ a} ⊆ {X1 −X ′1 > t} ⊆ {X1 > t/2} ∪ {X ′1 < −t/2}

so by independence and identical distributions,

1

2
P {X1 > t+ a} ≤ P {X1 −X ′1 > t} ≤ P {|X1| > t/2} (8)

The significance is that X1 −X ′1 is symmetric. This can be combined with the following
contraction principle, see [26, Lemma 4.6] for a more general version:

Lemma 5 Let ϕ : [0,∞) → [0,∞) be a convex function, K1 ≥ 1, K2 > 0, and let (Xi)
n
1

and (Yi)
n
1 each be i.i.d. sequences of symmetric random variables with P {|Xi| > t} ≤

K1P {K2 |Yi| > t} for all i and all t > 0. Then for all a ∈ Rn,

Eϕ

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
)
≤ Eϕ

(
K1K2

∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣
)

If we are given an i.i.d. sequence of random variables (Xi)
n
1 that satisfy a tail bound

such as P {|Xi| > t} ≤ h(t), then we consider the symmetrized sequence (Xi −X ′i)
n
1 which

obeys a similar tail bound, apply known results for a specific sequence of random vari-
ables (Yi)

n
1 with similar tails (e.g. Weibull variables), compare Eϕ (|

∑n
i=1 ai (Xi −X ′i)|) to

Eϕ (K1K2 |
∑n

i=1 aiYi|) using Lemma 5, convert this to a bound on P {|
∑n

i=1 ai (Xi −X ′i)| > t}
(using say Markov’s inequality), and then transfer the result for

∑n
i=1 aiXi −

∑n
i=1 aiX

′
i

back to a bound on P {|
∑n

i=1 aiXi| > t} using (8). In this way, estimates such as (7) may
be extended to the case of tail bounds such as P {|Xi| > t} ≤ C exp (−tq).
Proof of (6) and (7). The case p = 2 in (6) follows from the usual estimate of a
variance, so assume that p > 2. The lower bound in (6) follows trivially from |a|∞ ≤ |a|p.
By log-convexity of the map t 7→ |x|1/t, t ∈ [0, 1], 1/0 = ∞, which follows directly from
Hölder’s inequality, |a|p ≤ |a|

1−2/p
∞ |a|2/p. The replacement of |a|p with |a|∞ in the upper

bound holds trivially unless (E |X1|p)1/p |a|p is at least Cq
√
p
(
E |X1|2

)1/2
(for arbitrary

Cq > 0), in which case

(E |X1|p)1/(p−2) |a|∞ ≥ (E |X1|p)1/(p−2) |a|p/(p−2)p

≥ (E |X1|p)1/(p−2)
{

(E |X1|p)−1/p
√
p
(
E |X1|2

)1/2}p/(p−2)
≥ C

√
p
(
E |X1|2

)p/[2(p−2)]
Now consider s = sq > 2 such that for (E |X1|s)1/s |a|s = Cq

√
s
(
E |X1|2

)1/2
. Cq > 0 can

be chosen to ensure that a solution exists in, say, (3,∞). From what we have observed
above, (6) holds for all p ∈ [2, sq], and for all p > sq,

p1/p |a|∞
(E |X1|p)1/p |a|p

≥ cq
s1/s |a|∞

(E |X1|s)1/s |a|s
= c′q

s1/s |a|∞√
s
≥ c′′q
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so (
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ C
(

(E |X1|p)1/p |a|p +
√
p
(
E |X1|2

)1/2) ≤ Cq
(
p1/q |a|∞ +

√
p
)

(6) in full generality in now established. The probability bound follows by optimizing
over p. In Case 1 we assume that p1/q |a|∞ ≤

√
p, and then

P

{∣∣∣∣∣
n∑
i=1

aXi

∣∣∣∣∣ > t

}
≤ t−pE

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

≤
(
Cq
√
p

t

)p
= exp

(
−cqt2

)
for p = cqt

2. This value of p satisfies the defining inequality of Case 1 if t ≤ cq |a|−q/(2−q)∞ .
In Case 2 we assume that p1/q |a|∞ ≥

√
p, and then

P

{∣∣∣∣∣
n∑
i=1

aXi

∣∣∣∣∣ > t

}
≤ t−pE

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

≤
(
Cqp

1/q |a|∞
t

)p
≤ exp

(
−Cq

tq

|a|q∞

)
for p =

(
C−1q |a|

−1
∞ t
)q
e−1. This value of p is allowed in Case 2 provided t ≥ Cq |a|−q/(2−q)∞ .

For cq |a|−q/(2−q)∞ ≤ t ≤ Cq |a|−q/(2−q)∞ , the result follows by adjusting the values of cq and
Cq and using the fact that the cumulative distribution is non-decreasing.
We now present a direct proof of (7) without using (6) or the results of [22].

Theorem 6 There exists C > 0 such that the following is true. Let n ∈ N, 0 < q ≤ 1,
a ∈ Rn, a 6= 0, and (Xi)

n
1 an i.i.d. sequence of symmetric Weibull random variables with

parameter q, i.e. P {|Xi| > t} = exp (−tq), t ≥ 0. Then for all t > 0,

P

{∣∣∣∣∣
n∑
i=1

aXi

∣∣∣∣∣ > t

}
≤ C exp

(
−min

{
C−1/qq2/q

(
t

|a|

)2
, C−1

(
t

|a|∞

)q})

Proof. Write X = (F−1Φ (Zi))
n
i=1, where F (t) = P {X1 ≤ t} and Z is a random vector

in Rn with the standard normal distribution, and define ψ (x) =
∑n

1 aiF
−1Φ (xi), so that∑n

1 aiXi = ψ (Z), and

|∇ψ (x)| =
(

n∑
i=1

(
aiφ (Φ−1 (Φxi))

f (F−1 (Φxi))

)2)1/2
where f = F ′. Now, by comparing derivatives and behavior at infinity,

φ(t)

1 + t
≤ 1− Φ (t) ≤ φ(t)

t
: t > 0

which implies that for 1/2 ≤ t < 1, φ (Φ−1 (t)) ≤ (1 + Φ−1 (t)) (1− t). Now 1 − Φ (t) ≤
φ(t) for t ≥ 1, so for 1/2 ≤ t < 1 we have (taking max = 1 when second argument
undefined),

1 + Φ−1 (t) ≤ 1 + max

{
1,

√
2 ln

1√
2π (1− t)

}

9



By direct computation, for the same range of t,

f
(
F−1 (t)

)
= q (1− t)

(
ln

1

2 (1− t)

)−(−1+1/q)
so (

φ (Φ−1 (t))

f (F−1 (t))

)2
≤ q−2

(
AΦ−1 (t) +B

)−2+4/q
for universal constants A,B > 0, and

|∇ψ (x)| =

(
n∑
i=1

(
aiφ (Φ−1 (Φ |xi|))
f (F−1 (Φ |xi|))

)2)1/2

≤ q−1

(
n∑
i=1

a2i (A |xi|+B)−2+4/q
)1/2

The function

]x[ =

(
n∑
i=1

a2i |xi|
−2+4/q

)q/(4−2q)

is a norm, so

Lip (]·[) = sup
{

]θ[ : θ ∈ Sn−1
}

= sup


(

n∑
i=1

a2i |xi|
−1+2/q

)q/(4−2q)

: xi ≥ 0,
n∑
i=1

xi = 1


= |a|q/(2−q)∞

The Lipschitz constant of x 7→ ](A |xi|+B)n1 [ is therefore at most A |a|q/(2−q)∞ , and by
classical Gaussian concentration applied to this function, with probability at least 1 −
C exp

(
−cλ2

)
, (

n∑
i=1

a2i (A |Zi|+B)−2+4/q
)q/(4−2q)

≤ E

(
n∑
i=1

a2i (A |Zi|+B)−2+4/q
)q/(4−2q)

+ A |a|q/(2−q)∞ λ

≤
(

n∑
i=1

a2iE (A |Z1|+B)−2+4/q
)q/(4−2q)

+ A |a|q/(2−q)∞ λ

=
(
E (A |Z1|+B)−2+4/q

)q/(4−2q)
|a|q/(2−q) + A |a|q/(2−q)∞ λ

10



i.e. (
n∑
i=1

a2i (A |Zi|+B)−2+4/q
)1/2

≤
[(
E (A |Z1|+B)−2+4/q

)q/(4−2q)
|a|q/(2−q) + A |a|q/(2−q)∞ λ

]−1+2/q
The above implies that the convex set

K = {x ∈ Rn : |∇ψ (x)| ≤ R}

where

R = q−1
[(
E (A |Z1|+B)−2+4/q

)q/(4−2q)
|a|q/(2−q) + A |a|q/(2−q)∞ λ

]−1+2/q
≤ q−12−1+2/q

(
E (A |Z1|+B)−2+4/q

)1/2
|a|+ q−12−1+2/qA |a|∞ λ

−1+2/q

≤ C
1/q
2 (1/q)1/q |a|+ q−12−1+2/qA |a|∞ λ

−1+2/q

satisfies γn (K) ≥ 1−C exp
(
−cλ2

)
. Let ψ] denote a Lipschitz extension of the restriction

ψ|K such that Lip
(
ψ]
)
≤ R. Applying Gaussian concentration to ψ],

P
{∣∣ψ] (Z)−Mψ] (Z)

∣∣ > λR
}
≤ C exp

(
−cλ2

)
yet P

{
ψ] (Z) 6= ψ (Z)

}
≤ C exp

(
−cλ2

)
so P

{∣∣ψ (Z)−Mψ] (Z)
∣∣ > λR

}
≤ 2C exp

(
−cλ2

)
.

It follows as in the proof of Theorem 3 (and is very standard) that we may replaceMψ] (Z)
withMψ (Z) = 0 by changing the constants involved. Now, remembering that R involves
a λ, set t = λR and estimate λ in terms of t using Lemma 4.
When the Xi are not symmetric, and the equation P {|Xi| > t} = exp (−tq) is replaced

with P {|Xi| > t} ≤ C exp (−ctq), then one may use symmetrization and contraction
arguments to reduce to the case of symmetric Weibull variables, see for example [1, Section
3.2.2].

4 Application: Random sections of convex bodies

We now study random sections of convex bodies generated by random embeddings W :
Rk → X,

Wx =
n∑
i=1

k∑
j=1

Wi,jxjei

where (X, |·|X) is any real normed space of dim (X) ≥ n and (ei)
n
1 is a linearly independent

sequence in X. When ε ∈ (0, 1/2), n ≥ n0 (k, ε), W is an n × k standard Gaussian
random matrix and (ei)

n
1 are appropriately chosen in X, then it is well known that the
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corresponding embedding W is, with high probability, close to being an isometry (with
respect to the Euclidean norm on Rk), i.e. for all x ∈ Rk,

(1− ε)M ′ |x| ≤ |Wx|X ≤ (1 + ε)M ′ |x| M ′ = E

∣∣∣∣∣
n∑
i=1

Wi,1ei

∣∣∣∣∣
X

This is a Gaussian formulation of Dvoretzky’s theorem, originally proved by Dvoretzky
[9], re-formulated and re-proved using concentration on Sn−1 by Milman [28], recovering
the exact Dvoretzky dimension up to a universal constant (see also [29]), and a Gaussian
formulation due to Pisier, see e.g. [33]. We refer the reader to Schechtman’s survey
article [35] for more information on the subject and more detailed quantitative bounds.
We study the case where the matrix W has independent entries that do not necessarily
follow the standard Gaussian distribution. Our main result in this direction, Theorem 7,
recovers Milman’s general Dvoretzky theorem involving the parameter M/b (see Section
4 for more details). When X = `np (1 ≤ p <∞) and (ei)

n
1 are the standard basis vectors,

then the random section
BX ∩ range (W )

is isomorphic to an ellipsoid but not usually almost isometric, where

BX = {x ∈ X : |x|X ≤ 1}

In the case of X = `n∞ (with the standard basis) we see completely different behavior, and
the random section is isomorphic to the floating body, see for example [2, 12, 36], which
may be far from ellipsoidal. In the special case of the Gaussian distribution, of course,
the floating body is a Euclidean ball.
The spirit here is not to find Euclidean subspaces of largest dimension and smallest

distortion, but rather to understand the various subspaces that exist, and to study new
populations of subspaces that escape the purview of uniformly distributed subspaces. Like
Milman’s proof in the case of uniformly distributed subspaces, the proof of Theorem 7 is
based on concentration of measure and an epsilon-net argument. What is new is the use
of the concentration of measure techniques discussed in Sections 1.1 and 1.2.
For any probability measure µ on R and associated cumulative distribution F : R →

[0, 1] defined by F (t) = µ (−∞, t], the generalized inverse F−1 : (0, 1)→ R, known as the
quantile function, is defined by

F−1(s) = inf {t ∈ R : F (t) > s} (9)

Theorem 7 Let n, k ∈ N and T ∈ [2,∞), and for each 1 ≤ i ≤ n and 1 ≤ j ≤ k, let µi,j
be a probability measure on R with cumulative distribution Fi,j. Let F−1i,j be the generalized
inverse of Fi,j as defined by (9), and assume that each F−1i,j is locally Lipschitz on (0, 1),
and that each µi,j has finite first moment,∫ ∞

−∞
|x| dµi,j(x) <∞

Let W be an n× k random matrix with independent entries (Wi,j), where the distribution
of Wi,j is µi,j, and assume that there is no single hyperplane in which the distribution of

12



every row (Wi,j)
k
j=1 is supported. Let G be an n × k standard Gaussian random matrix.

Let K ⊂ Rn be a convex body with 0 ∈ int(K) and set b = sup {|θ|K : θ ∈ Sn−1}. Consider
the following norm on Rn×k,

|A|] = max
1≤i≤n

sup
06=y∈Rk

(∑k
j=1A

2
i,jy

2
j

)1/2
E |Wy|K

Let Q : Rn×k → R be a measurable function such that for all A ∈ Rn×k,

Q(A) ≥ b
∣∣∣(Lip (F−1i,j ◦ Φ, Ai,j

))
i,j

∣∣∣
]

where Lip (·, ·) is defined in (3). Let ξ : [0,∞) → [0,∞) be a non-decreasing function
such that for all t ≥ 0, P {Q(G) > ξ(t)} ≤ 2 (1− Φ(t)). Set

ε = 8L(Q)Tξ(T ) + 28L(Q)

√∫ ∞
2

ξ(t)2t3 exp (−t2/2) dt (10)

where L (·) is defined in (2), and assume that both of the following conditions hold

0 < ε ≤ 1/2 k ≤ (1/19)
(
log ε−1

)−1
T 2 (11)

Then with probability at least 1− exp (−T 2/4) the following event occurs: for all x ∈ Rk,

(1− ε)E |Wx|K ≤ |Wx|K ≤ (1 + ε)E |Wx|K

Comments for Theorem 7:
• Interpretation: The bodyK[ =

{
x ∈ Rk : E |Wx|K ≤ 1

}
is a compact convex set with

0 ∈ int(K[), and the theorem can be interpreted geometrically as a deviation inequality for
the random body K ∩Range(W ) (with appropriate coordinates) about the deterministic
body K[. When the entries ofW are i.i.d. then the body K[ is invariant under coordinate
permutations. When the distribution of each entry is even (symmetric about 0), then K[

is invariant under reflections about the coordinate axes (i.e. unconditional).
• Bounding L(Q): Since |·|] is unconditional, Lemma 2 implies that typically (as with
our other results) we may choose Q so that L(Q) ≤

√
2.

• k ≤ n: While this is not explicitly assumed, the conclusion guarantees that null (W ) =
{0}. The case k > n is indeed impossible because, since ε ≤ 1/2 (10) implies an upper
bound for T and (11) then implies a bound on k.
• Milman’s general Dvoretzky theorem as a special case: Suppose that K is
centrally symmetric (i.e. −K = K) in which case |·|K is a norm, and that W is a
standard Gaussian random matrix. It follows that E |Wx|K = (1− δn)

√
nM |x|, where

1 − δn = n−1/2E |Y1| depends only on n (Y1 denotes the first column of W ), δn → 0 as
n→∞,

M =

∫
Sn−1
|x|K dσn(x)

13



and σn is normalized Haar measure on Sn−1. In particular

|A|] = (1− δn)−1 n−1/2M−1 max
i,j
|Ai,j|

and we may take Q (A) = ξ(t) = 2n−1/2M−1b in which case L(Q) = 1. Assuming
n1/2Mb−1 ≥ C ′ (which we may without loss of generality by considering the probability
bound below), choosing any ε ∈ (0, 1/2) as an independent variable and setting

T ≈ Cεn1/2Mb−1

this recovers Milman’s general Dvoretzky theorem with the suffi cient condition k ≤
c (log ε−1)

−1
ε2nM2b−2, probability 1− C exp (−cε2nM2b−2), and estimate

(1− ε)M |x| ≤ 1√
n
|Wx|K ≤ (1 + ε)M |x|

Here we have used the fact that

0 ≤ δn ≤ Cn−1/2 ≤ CbM−1n−1/2 ≤ ε/10

otherwise the probability bound becomes trivial, so we may ignore δn. Such a bound for
k recovers the correct ’Dvoretzky dimension’nM2b−2 and is optimal in a certain sense
for fixed ε, say ε = 1/4, up to a universal constant, see [29]. It also gives the original
dependence on ε until it was improved by Schechtman [34] to k ≤ cε2nM2b−2, see also the
paper by Gordon [19, Theorem 7] that gives Euclidean subspaces of dimension cε2 log n.
It is known that using an affi ne map we may always place K in John’s position, where
the ellipsoid of maximal volume in K is Bk

2 , and in this case M ≥ c
√
n−1 log n and

b = 1. In the language of functional analysis, this implies that real Hilbert space is
finitely representable in any infinite dimensional real Banach space (also known over C).
• Non-Gaussian sections of Bn

p (1 ≤ p < ∞) are isomorphic but not usually
almost-isometric to n−1/pBk

2 : When K = Bn
p (1 ≤ p < ∞) and each µi,j = µ for

some probability measure µ with mean zero, variance one and log-concave density, and
we denote the rows of W by (Xi)

n
1 , then for each θ ∈ Sn−1, 〈θ,Xi〉 has a log-concave

distribution with mean zero and variance one, and by Jensen’s inequality

E |Wx|p = E

(
n∑
i=1

|〈x,Xi〉|p
)1/p

≤ Cpn1/p |x|

on the other hand

E |Wx|p ≥
1

2
M

(
n∑
i=1

|〈x,Xi〉|p
)1/p

≥ Cn1/p |x|

Therefore a random section of Bn
p using a matrix with i.i.d. mean zero variance one log-

concave entries is isomorphic to n−1/pBk
2 with distortion depending on p (but usually not

almost isometric).
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In the case where each Wi,j has a two sided exponential distribution with density
2−1e−|t|, for example, Lip

(
F−1i,j Φ, t

)
≤ C |t|, |A|] ≤ Cpn

−1/p maxi,j |Ai,j|, set Q (A) =

Cpbn
−1/p maxi,j |Ai,j|, ε = 1/4, and ξ (t) = Cpbn

−1/p
(

(log n)1/2 + t
)
. Setting T ≈ cpb

−1/2n1/(2p),
we may take

k = cpb
−1n1/p =

{
cpn

1/2 : 1 ≤ p ≤ 2
cpn

1/p : 2 ≤ p <∞
and the corresponding section of Bn

p is (with high probability) isomorphic to B
k
2 with

distortion Cp.
• Non-Gaussian sections of Bn

∞ are not necessarily isomorphic to Bk
2 , but in-

stead are almost-isometric to the floating body: The case p =∞ is quite different
to the case 1 ≤ p < ∞. Note that the body

{
x ∈ Rk : E |Wx|∞ ≤ 1

}
is the polar (dual)

of the (symmetrized) expected convex hull

Econv {±Xi}n1 =

{
x ∈ Rk : ∀θ ∈ Sk−1, 〈x, θ〉 ≤ E max

1≤i≤n
|〈Xi, θ〉|

}
The bound

(1− ε)E |Wx|∞ ≤ |Wx|∞ ≤ (1 + ε)E |Wx|∞
valid for all x ∈ Rk, implies that

(1− ε)Econv (Xi)
n
1 ⊆ conv (Xi)

n
1 ⊆ (1 + ε)Econv (Xi)

n
1

Results of this type (i.e. concentration of the convex hull within the space of convex
bodies) are multivariate generalizations of Gnedenko’s law of large numbers on the max-
imum and minimum of a random sample, since for a compact set E ⊂ R1, conv (E) =
[inf E, supE]. Such multivariate extensions were studied in [12, 14] (under the assumption
that the rows are i.i.d. and have a log-concave distribution, but individual coordinates
need not be independent), and other variations in [8, 10, 11, 17, 18, 23, 27] (we refer the
reader to the introduction in [14] for a more detailed discussion). When all rows share a
common distribution (say ν) that is rotationally invariant (in our case this corresponds to
the standard Gaussian matrix), then Econv (Xi)

n
1 is a Euclidean ball, but for most other

distributions Econv (Xi)
n
1 is far from Euclidean. When ν is log-concave and not contained

in any affi ne hyperplane, the expected convex hull is similar to the floating body F1/n
(which is what remains of Rk after all half-spaces of ν-measure less than 1/n have been
deleted, see e.g. [2, 12, 36]) and in this case it was shown in [14] that for n ≥ 4,(

1− C

log n

)
F1/n ⊆ Econv (Xi)

n
1 ⊆

(
1 +

C

log n

)
F1/n

Non-Gaussian embeddings into `n∞ were also studied by Gordon, Litvak, Pajor, and
Tomczak-Jaegermann [20]: given a symmetric convex body K ⊂ Rk, one chooses the
rows of W to be i.i.d. from the dual unit ball, and then the corresponding embedding
W embeds

(
Rk, |·|K

)
↪→1+ε `

n
∞. In the case K = Bn

p (1 ≤ p ≤ ∞), the entries of such a
matrix are almost i.i.d. by the volume representation of Bn

q .
Proof of Theorem 7. By a smoothing argument we may assume without loss of
generality that each µi,j has a C

∞ density function fi,j = dµi,j/dx. Since this is a
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standard procedure in analysis and we wish to simplify notation, we won’t work with
the smoothed measure and then take a limit at the end of the proof, but will rather
just assume that fi,j exists and is C∞ from the start. The Knöthe-Rosenblatt map
T : Rn×k → Rn×k takes the form (T (A))i,j = F−1i,j (Φ (Ai,j)). By the triangle inequal-
ity it follows that |·|K is b-Lipschitz on Rn. Let σ > 0 and let g(σ) = |·|K ∗ ϕσ, where
ϕσ(x) = (2πσ)−n/2 exp

(
− |σ−1x|2 /2

)
, in which case g(σ) is C∞ and

∣∣∇g(σ)(x)
∣∣ ≤ b for all

x ∈ Rn. The set K[ =
{
x ∈ Rk : E |Wx|K ≤ 1

}
is seen to be compact and convex, with

0 ∈ int(K). Consider any (momentarily fixed) θ ∈ ∂K[, and define ψσ,θ : Rn×k → R by

ψσ,θ (A) = g(σ) ((TA) θ)

where y 7−→ (TA) y denotes the standard action of Rn×k on Rk. A direct calculation
shows that

∣∣∇ψσ,θ (A)
∣∣ ≤

 n∑
i=1

k∑
j=1

[
φ (Ai,j) θj

fi,jF
−1
i,j Φ (Ai,j)

g
(σ)
i

((
k∑

w=1

F−1u,wΦ (Au,w) θw

)n

u=1

)]21/2

=

 n∑
i=1

g(σ)i

((
k∑

w=1

F−1u,wΦ (Au,w) θw

)n

u=1

)2 k∑
j=1

(
φ (Ai,j) θj

fi,jF
−1
i,j Φ (Ai,j)

)21/2

≤ b max
1≤i≤n

 k∑
j=1

(
φ (Ai,j) θj

fi,jF
−1
i,j Φ (Ai,j)

)21/2

(12)

By definition of |·|] and Q, this is bounded above by

b
∣∣∣(Lip (F−1i,j ◦ Φ, Ai,j

))
i,j

∣∣∣
]
E |Wθ|K ≤ Q (A)

By Theorem 3 with A = 2 it follows that for all t ≥ 2 > Φ−1 (7/8), with probability at
least 1 − exp (−t2/2),

∣∣ψθ,σ(G)−Mψθ,σ(G)
∣∣ ≤ 2L(Q)tξ(t). By sending σ → 0, we get

(with the same probability), ||Wθ|K −M |Wθ|K | ≤ 2L(Q)tξ(t). Comparing the mean
and median,

|E |Wθ|K −M |Wθ|K | ≤
√

2Var |Wθ|K ≤
√

2E ||Wθ|K −M |Wθ|K |
2 (13)

By our bound on the distribution of ||Wθ|K −M |Wθ|K |,

E ||Wθ|K −M |Wθ|K |
2 ≤ 16L(Q)2ξ (2)2 +

∫ ∞
2

4L(Q)2t2ξ(t)2t exp
(
−t2/2

)
dt

Since ξ is non-decreasing,

ξ (2)2 ≤
(∫ ∞

2

t3 exp
(
−t2/2

)
dt

)−1 ∫ ∞
2

t3ξ(t)2 exp
(
−t2/2

)
dt

≤ (1.236)

∫ ∞
2

t3ξ(t)2 exp
(
−t2/2

)
dt
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and

E ||Wθ|K −M |Wθ|K |
2 ≤ 24L(Q)2

∫ ∞
2

t3ξ(t)2 exp
(
−t2/2

)
dt

Using the triangle inequality, (13) and the assumptions of the theorem, we see that with
probability at least 1− exp (−T 2/2), ||Wθ|K − E |Wθ|K | ≤ ε/4, where

ε = 8L(Q)Tξ(T ) + 28L(Q)

√∫ ∞
2

ξ(t)2t3 exp (−t2/2) dt

Recall that θ ∈ ∂K[ was momentarily fixed (but arbitrary). We now apply the standard
epsilon-net argument to achieve a uniform bound over all ∂K[. Let N ⊂ ∂K[ be an ε/4-
net with respect to the distance function ρ(x, y) = |y − x|K[ , where |x|K[ = E |Wx|K . By
Lemma 5.2 in [14], which is a modification of Lemmas 4.10 and 4.11 in [32] for centrally
symmetric bodies, one can choose N so that |N | ≤ (12/ε)k, and for each x ∈ ∂K[ one
has the series expansion x = ω0 +

∑∞
1 εiωi, with 0 ≤ εi < (ε/4)i and (ωi)

∞
0 ⊆ N .

With probability at least 1− (12/ε)k 4 exp (−T 2/2), for all ω ∈ N , ||Wω|K − E |Wω|K | ≤
(ε/4)E |Wω|K and by the series expansion and the triangle inequality it follows that for
all x ∈ ∂K[,

|Wx|K ≤ |Wω0|K +
∞∑
i=1

εi |Wωi|K ≤ (1 + ε)E |Wω0|K

and

|Wx|K ≥ |Wω0|K −
∞∑
i=1

εi |Wωi|K ≥ (1− ε)E |Wω0|K

The result now follows by positive homogeneity of |x|K[ .
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